Антиген е положительно

Антиген е положительно

ЮЛ. Антигены

10.1.1. Общие представления

Онтогенез каждого макроорганизма про­ходит в непосредственном контакте с чуже­родными для него клетками, доклеточными формами жизни, а также отдельными моле­кулами биологического происхождения. Все эти объекты, будучи чужеродными, таят в себе огромную опасность: контакт с ними мо­жет нарушить гомеостаз, повлиять на течение биологических процессов и даже повлечь ги­бель макроорганизма. Поэтому чужеродные биологические объекты представляют собой эволюционно сформировавшийся ранний сигнал опасности для иммунной системы: они являются основным раздражителем и ко­нечной точкой приложения системы приоб­ретенного иммунитета. Совокупность таких объектов, как явления биологического мира, получила название антиген (от греч. antiпротив и genosсоздавать).

Антиген — это биополимер органичес­кой природы, генетически чужеродный для макроорганизма, который при попадании в последний распознается его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

Теоретически антигеном может быть мо­лекула любого органического вещества, как вредного для макроорганизма, так и безвред­ного. В частности, антигенами являются ком­поненты и продукты жизнедеятельности бак­терий, грибов, простейших, вирусных частиц, организмов животных и растений.

Антигены имеют самое разнообразное про­исхождение. В сущности, они являются про­дуктом природного биологического синтеза любого чужеродного организма. В ряде случа­ев антигены могут образовываться в собствен­ном организме при структурных изменениях

уже синтезированных молекул при биодегра­дации, нарушении их нормального биосинтеза (эпигенетическая мутация) или генетической мутации клеток. Кроме того, антигены могут быть получены искусственно в результате на­учной или производственной деятельности человека, в том числе путем направленного химического синтеза. Однако в любом случае молекулу антигена будет отличать генетичес­кая чужеродность по отношению к макроор­ганизму, в который она попала.

Антигены могут проникать в макроорга­низм самыми различными путями: через кож­ные покровы или слизистые, непосредствен­но во внутреннюю среду организма, минуя покровы, — или образовываясь внутри него. Антигены распознаются иммунокомпетент-ными клетками и вызывают каскад разнооб­разных иммунных реакций, направленных на их инактивацию, разрушение и удаление.

По современным представлениям, учение об антигенах является ключевым для понима­ния основ молекулярно-генетических меха­низмов иммунной защиты макроорганизма, а также принципов иммунотерапии и имму­нопрофилактики.

10.1.2. Свойства антигенов

Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

10.1.2.1. Антигенность

Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей

молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп».

Различают линейные, или секвенциальные, антигенные детерминанты (например, пер­вичная аминокислотная последовательность пептидной цепи) и поверхностные, или кон-формационные (расположенные на повер­хности молекулы антигена и возникшие в результате вторичной или более высокой кон-формации). Кроме того, существуют конце­вые эпитопы (расположенные на концевых участках молекулы антигена) и центральные. Определяют также «глубинные», или скрытые, антигенные детерминанты, которые проявля­ются при разрушении биополимера.

Размер антигенной детерминанты невелик, но может варьировать. Он определяется осо­бенностями антиген-рецепторной части фак­тора иммунитета, с одной стороны, и видом эпитопа — с другой. Например, антигенсвя-зывающий участок молекулы иммуноглобу­лина (как сывороточного, так и рецептора В-лимфоцита) способен распознать линей­ную антигенную детерминанту, образованную всего лишь 5 аминокислотными остатками. Конформационная детерминанта по сравне­нию с линейной несколько больше — для ее образования требуется 6—12 аминокислотных остатков. Рецепторный аппарат Т-лимфоци-тов ориентирован на иные по строению и раз­меру антигенные детерминанты. В частнос­ти, Т-киллеру для определения чужеродности требуется нанопептид, включенный в состав МНС I класса; Т-хелперу при распознавании «свой-чужой» необходим олигопептид разме­ром 12—25 аминокислотных остатков в комп­лексе с МНС II класса.

Структура и состав эпитопа имеют кри­тическое значение. Замена хотя бы одного структурного элемента молекулы приводит к образованию принципиально новой анти­генной детерминанты с иными свойствами. Нужно также отметить, что денатурация при­водит к полной или частичной потере анти­генных детерминант или появлению новых, при этом теряется специфичность антигена.

Так как молекулы большинства антигенов имеют довольно большие размеры, в их струк­туре определяется множество антигенных де-

терминант, которые распознаются разными по специфичности антителами и клонами лимфоцитов. Поэтому антигенность вещества зависит от наличия и числа антигенных детер­минант в структуре его молекулы.

Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как имму-нокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

В норме иммунная система невосприим­чива к собственным биополимерам. Если на какой-либо биополимер в макроорганизме возникла реакция, то, соответственно, он приобрел черты чужеродности и перестал вос­приниматься иммунной системой как «свой». Подобное событие может возникнуть при некоторых патологических состояниях как результат нарушения регуляции иммунного ответа (см. «аутоантигены», «аутоантитела». «аутоиммунитет», «аутоиммунные болезни»).

Чужеродность находится в прямой зависи­мости от «эволюционного расстояния» между организмом-реципиентом и донором анти­генов. Чем дальше в филогенетическом раз­витии организмы отстоят друг от друга, тем большей чужеродностью и, следовательно, иммуногенностью обладают их антигены по отношению друг к другу. Это свойство ис­пользуют биологи и палеонтологи (при изуче­нии филогенеза, уточнении классификации и т.д.), судебно-медицинские эксперты и кри­миналисты (установление кровного родства, принадлежности улик, фальсификации пи­щевых продуктов и т. д.).

Чужеродность заметно проявляется даже между особями одного вида. Отмечено, что единичные замены аминокислот, составляю­щих основу внутривидового полиморфизма, эффективно распознаются антителами в се­рологических реакциях.

Вместе с тем антигенные детерминанты да­же генетически неродственных животных или

структурно различных биополимеров могут иметь определенное подобие. В этом случае их антигены оказываются способными специ­фически взаимодействовать с одними и теми же факторами иммунитета. Такие антигены получили название перекрестно реагирующих. Описанное явление характерно, например, для альбуминов, коллагенов, миоглобинов различ­ных видов животных. Обнаружено также сходс­тво антигенных детерминант стрептококка, сарколеммы миокарда и базальной мембраны почек, Treponema pallidum и липидной вытяжки из миокарда крупного рогатого скота, возбуди­теля чумы и эритроцитов человека О (I) группы крови. Явление, когда один микроб маскирует­ся антигенами другого микроба или макроорга­низма для «защиты» от факторов иммунитета, получило название антигенная мимикрия.

10.1.2.2. Иммуногенность

Иммуногенность — потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы:

  1. Молекулярные особенности антигена;

  2. Клиренс антигена в организме;

  3. Реактивность макроорганизма.

К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

Иммуногенность в значительной степени за­висит от природы антигена. Известно, что наибо­лее выраженными иммуногенными свойствами обладают белки и полисахариды, а нуклеино­вые кислоты и липиды, напротив, слабоимму-ногенны. В то же время их сополимеры: ЛПС, гликопротеиды, липопротеиды, — способны в достаточной мере активировать иммунную сис­тему и поэтому занимают промежуточное поло­жение по степени иммуногенности.

Определенное влияние на степень имму­ногенности оказывает химический состав мо­лекулы антигена. В частности, для иммуно­генности белков важно разнообразие их ами­нокислотного состава. Отмечено также, что сополимеры, состоящие из нескольких амино­кислот, иммуногеннее, чем из одной амино­кислоты. «Монотонные» полипептиды, пост-

роенные из одной аминокислоты, практически не активируют иммунную систему. Наличие в структуре молекулы белка ароматических ами­нокислот, таких как тирозин, триптофан, су­щественно повышает иммуногенность.

Важна также оптическая изомерия аминок-слот, составляющих молекулу белка. Пептиды, построенные из L-аминокислот, легко под­даются ферментативной деградации и вы-сокоиммуногенны. Полипептидная цепочка, построенная из правовращающих изомеров аминокислот, напротив, медленно расщеп­ляется ферментами макроорганизма и может проявлять лишь ограниченную иммуноген­ность при введении в очень малых дозах, так как высокие дозы таких соединений быстро приводят к развитию иммунологической то­лерантности (см. гл. 11, разд. 11.6).

Несмотря на кажущуюся равноценность ан­тигенных детерминант по иммуногенности, в их спектре существует определенная иерархия. Она проявляется тем, что эпитопы различают­ся по способности индуцировать иммунный ответ. Поэтому при иммунизации некоторым антигеном в полученном спектре антител будут преобладать иммуноглобулины, специфичные к отдельным антигенным детерминантам. Это явление получило название иммунодоминант-ности. По современным представлениям, им-мунодоминантность обусловлена различиями в сродстве эпитопов к антигенпрезентирую-щим комплексам гистосовместимости.

Большое значение имеет размер и молекулярная масса антигена. Несмотря на то, что белки хорошо стимулируют иммунную систему, небольшие по­липептидные молекулы с молекулярной массой менее 5 кДа, как правило, низкоиммуногенны. Минимальный расчетный размер олигопептида, способный индуцировать иммунный ответ, 6—12 аминокислотных остатков с молекулярной мас­сой около 450 Да. С увеличением размера пептида возрастает его иммуногенность. Теоретически су­ществует определенная зависимость между этими параметрами, однако на практике она не всегда выполняется из-за влияния посторонних факто­ров. Так, например, при равной молекулярной массе (около 70 кДа) альбумин является более сильным антигеном, чем гемоглобин.

Для полисахаридов сохраняются примерно те же зависимости, что и для пептидных анти-

генов. Например, практически не проявляет никакой иммуногенности декстран, который используют в клинике для трансфузионной терапии — его молекулярная масса составля­ет около 75 кДа. В то же время полисахарид с молекулярной массой 600 кДа достаточ­но хорошо индуцирует в организме человека иммунную реакцию. Примечательно, что на нуклеиновые кислоты описанные закономер­ности практически не распространяются.

На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Чрезвычайно важным оказалось наличие в структуре антигена ос-спирали, разветвлен­ных боковых цепей, а также высокой плотнос­ти идентичных по строению эпитопов.

Опытным путем было доказано, что вы­сокодисперсные коллоидные растворы ан­тигена плохо индуцируют иммунный ответ. Гораздо большей иммуногенностью обладают агрегаты молекул и корпускулярные антиге­ны — цельные клетки (эритроциты, бактерии и т. д.). Это связано с тем, что корпускулярные и высокоагрегированные антигены лучше фа­гоцитируются, чем отдельные молекулы.

Важность пространственной структуры ан­тигена подчеркивает и тот факт, что фибрил­лярный белок коллаген, имеющий большую молекулярную массу (около 330 кДа), обладает значительно меньшей иммуногенностью по сравнению с таким глобулярным белком, как альбумин, который почти в 5 раз его легче.

Оказалась также существенной стерическая стабильность молекулы антигена. При денату­рации коллагена до желатина вместе с конфор-мационной «жесткостью» структуры молекулы практически полностью исчезает и ее иммуно-генность. Поэтому растворы желатина широко используются для парентерального введения.

Еще одним важным условием иммуно­генности является растворимость антигена. Например, такие высокомолекулярные бел­ки, как кератин, меланин, натуральный шелк, как и другие высокополимерные соединения, не могут быть получены в виде коллоидно­го раствора в нормальном состоянии, и они не являются иммуногенами. Благодаря этому свойству конский волос, шелк, кетгут и дру­гие применяются в клинической практике для восстановления целостности органов и

тканей. Поэтому воспалительную реакцию в месте шва или репозиции не следует рас­сматривать как иммунологический конфликт, спровоцированный шовным материалом.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость имму­ногенности антигена от способа его введения. Это свойство обусловлено анатомо-топографически-ми особенностями строения и развития иммун­ной системы в местах аппликации антигена, а также биологической природой иммуногена и в обязательном порядке учитывается при вакци­нации или иммунизации. Например, учитывая тропизм антигена, вакцину против полиомиели­та вводят перорально, против сибирской язвы — накожно, БЦЖ — внутрикожно, АКДС — под­кожно, против столбняка — внутримышечно.

На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ. Однако пе­редозировка антигена вызывает обратную ре­акцию — иммунологическую толерантность. Между количеством антигена и силой иммун­ного ответа в определенном отрезке (интерва­ле) доз существует логарифмическая зависи­мость, выражаемая уравнением антигенности (А. А. Воробьев, А. В. Маркович):

lgH = alfa+ betalgD,

где al и be — коэффициенты, характеризую­щие соответственно природу антигена и им-мунореактивность макроорганизма; Н — сила иммунного ответа; D — количество антигена.

Третья группа объединяет факторы, опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы. Хорошо известно, что результат иммунизации в определенной мере связан с генотипом особи. Существуют чувствительные и нечувствительные к определенным антигенам роды и виды живот­ных, которых используют в лабораторной работе. Например, кролики и крысы практически не ре­агируют на некоторые бактериальные антигены, которые могут вызывать у морской свинки или мыши чрезвычайно бурный иммунный ответ.

Даже внутри вида можно выделить группы близкородственных особей (например, ин-

бредные линии животных), которые по-раз­ному будут отвечать на вводимый антиген. В ходе гибридологического исследования ус­тановлено, что сила иммунного ответа на простой антиген у мышей детерминируется одним геном и имеет доминантный модус на­следования. Иммунное реагирование на слож­ные по строению антигены имеет мультиген-ный контроль. Причем у мышей и морских свинок четко прослеживается ассоциация силы иммунного ответа с генами главного комплекса гистосовместимости. В популяции людей также известны значительные (в десят­ки и сотни раз) межиндивидуальные различия в чувствительности к вакцинам — выделяют иммунологически реактивных и иммунологи-чески инертных индивидуумов.

Однако, как показали исследования, наряду с генетической предрасположенностью нема­ловажное значение имеет также функциональ­ное состояние макроорганизма — его психо­эмоциональный и гормональный фон, интен­сивность обменных процессов и пр. От этого зависит различный уровень чувствительности к одному и тому же антигену, как у одного ин­дивидуума в разные возрастные периоды, так и популяционная гетерогенность в целом.

Таким образом,

Иммуногенность является важным свойс­твом антигена, которое необходимо учиты­вать не только в научных исследованиях. С иммуногенностью, а точнее с индивиду­альной реактивностью макроорганизма на

! введение антигена, связаны популяционные проблемы вакцинации. Ввиду сложности подбора индивидуальной дозы вакцинного

I препарата, применяют те дозы, способы и формы его введения, которые обеспечивают наибольший процент положительных реак­ций в популяции в целом. Считается, что для предотвращения или прекращения развития эпидемического процесса необходимо, что­бы иммунитетом в коллективе располагало 45 % привитых.

Иммуногенностью антигена можно уп­равлять, модифицируя перечисленные вы­ше факторы. Существуют группы веществ:

адъювантов и иммуномодуляторов, — кото­рые способны неспецифически усиливать это свойство антигена. Такой эффект широко используется при создании вакцин, в имму­нотерапии, иммунопрофилактике и научно-исследовательской работе.

10.1.2.3. Специфичность

Специфичностью называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа — необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов анти-генреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом. Подсчитано, что на отдельные антигенные детерминанты одновременно ре­агирует до ста различных клонов эффектор-ных лимфоцитов. Это обусловливает широкий спектр варьирования аффинности специфичес­ких иммуноглобулинов, и такие иммуноглобу­лины называют поликлональными.

10.1.3. Классификация антигенов • Основываясь на отдельных характерных свойствах, все многообразие антигенов может быть подразделено на несколько классифика­ционных групп:

  • по происхождению,

  • по природе,

  • по молекулярной структуре,

  • по степени иммуногенности,

  • по степени чужеродности,

По происхождению различают экзоген­ные (возникшие вне организма) и эндоген­ные (возникшие внутри организма) антигены. Среди эндогенных особого внимания заслу­живают ауто- и неоантигены.

Аутогенные антигены (аутоантигены), или антигены собственного организма, — это

структурно неизмененные молекулы, синтези­руемые в организме в физиологических усло­виях. В норме аутоантигены не вызывают ре­акцию иммунной системы вследствие сформи­ровавшейся иммунологической толерантности (невосприимчивости) либо их недоступности для контакта с факторами иммунитета — это так называемые забарьерные антигены. При срыве толерантности или нарушении целост­ности биологических барьеров (наиболее час­тая причина — травма) компоненты иммунной системы начинают специфически реагировать на аутоантигены выработкой специфических факторов иммунитета (аутоантитела, клон ау-тореактивных лимфоцитов).

От аутоантигенов следует отличать неоан­тигены, которые возникают в организме в результате мутаций. После модификации мо­лекулы приобретают черты чужеродности.

По природе: биополимеры белковой (протеиды) и небелковой природы (полиса­хариды, липиды, липополисахариды, нуклеи­новые кислоты и пр.).

По молекулярной структуре: глобуляр­ные (молекула имеет шаровидную форму) и фибриллярные (форма нити).

По степени иммуногенности: полно­ценные и неполноценные. Полноценные ан­тигены обладают выраженной антигеннос-тью и иммуногенностью — иммунная система чувствительного организма реагирует на их введение выработкой факторов иммунитета. Такие вещества, как правило, имеют доста­точно большую молекулярную массу (более 10 кДа), большой размер молекулы (частицы) в виде глобулы и хорошо взаимодействуют с факторами иммунитета.

Неполноценныеантигены, или гаптены (термин предложен К. Ландштейнером), напротив, не способны при введении в нормальных условиях индуцировать в организме иммунный ответ, так как обладают крайне низкой иммуногенностью. Однако свойство антигенности они не утратили, что позволяет им специфически взаимодейс­твовать с уже готовыми факторами иммунитета (антителами, лимфоцитами). Чаще всего гапте-нами являются низкомолекулярные соединения (молекулярная масса меньше 10 кДа).

При определенных условиях удается за­ставить иммунную систему макроорганизма

специфически реагировать на гаптен как на полноценный антиген и вырабатывать фак­торы иммунитета. Для этого необходимо ис­кусственно укрупнить молекулу гаптена — соединить ее прочной связью с достаточно большой белковой молекулой. Молекула бел­ка-носителя получила название шлеппер (от нем. schlepper — буксир). Синтезированный таким образом конъюгат будет обладать всеми свойствами полноценного антигена и вызы­вать при введении в организм выработку ан­тител или клона лимфоцитов, специфичных к гаптенной части комплекса. При этом спе­цифичность в составе молекулы конъюгата определяется гаптенной частью, а иммуно-генность — белком-носителем.

Используя для иммунизации конъюгаты, получают антитела к гормонам, лекарствен­ным препаратам и другим низкоиммуно-генным соединениям. Созданные на осно­ве антител к низкомолекулярным веществам диагностикумы, диагностические наборы и иммуносорбенты позволили значительно рас­ширить возможности и повысить эффектив­ность лабораторной диагностики и фармако­терапии, а также синтеза и выделения особо чистых биоорганических соединений.

По степени чужеродности: ксено-, ал­ло- и изоантигены. Ксеногенные антигены (или гетерологичные) — общие для организмов, стоящих на разных ступенях эволюционного развития, например, относящиеся к разным родам и видам. Впервые феномен общности ряда антигенов у животных различных видов был отмечен Д. Форсманом (1911). Ученый иммунизировал кролика суспензией органов морской свинки. Оказалось, что полученная в ходе эксперимента иммунная сыворотка бы­ла способна взаимодействовать не только с антигенами морской свинки, но также агглю­тинировать эритроциты барана. Позже было установлено, что морская свинка и баран име­ют ряд структурно сходных антигенных детер­минант, дающих перекрестное реагирование. В дальнейшем перечень подобных ксеногенных антигенов был расширен десятками и сотнями пар и даже триплетов, которые формировали между собой как теплокровные, так и холод­нокровные животные, растения и микробы. Все эти антигены получили обобщенное на-

звание антигены Форсмана. В настоящее время антигены Форсмана рассматривают в истори­ческом аспекте, а исследование гетероанти-генов широко применяется в судебно-меди­цинской экспертизе, палеонтологии и других областях медицины и естествознания.

Аллогенные антигены (или групповые) — об­щие для генетически неродственных орга­низмов, но относящихся к одному виду. На основании аллоантигенов общую популяцию организмов можно подразделить на отдельные группы. Примером таких антигенов у людей являются антигены групп крови (системы АВО и др.) и многие другие. Аллогенные ткани при трансплантации иммунологически несов­местимы — они отторгаются или лизируются реципиентом. Микробы на основании груп­повых антигенов могут быть подразделены на серогруппы. Это имеет большое значение для микробиологической диагностики (например, классификация сальмонелл Кауфмана—Уайта) и эпидемиологического прогнозирования.

Изогенные антигены (или индивидуаль­ные) — общие только для генетически иден­тичных организмов, например для однояйцо­вых близнецов, инбредных линий животных. Изотрансплантаты обладают практически полной иммунологической совместимостью и не отторгаются реципиентом при пересадке. Примером таких антигенов в популяции лю­дей являются антигены гистосовместимости, а у бактерий — типовые антигены, не дающие дальнейшего расщепления.

В пределах отдельного организма в опреде­ленных анатомо-морфологических образовани­ях (например, органах или тканях) обнаружива­ются специфичные для них антигены, которые в других органах и тканях больше не встреча­ются. Это, например, раковоэмбриональные антигены (альфа-фетопротеин, трансферрин). Такие антигены получили обобщенное назва­ние органо- и тканеспецифтеских.

Отдельным критерием классификации является направленность активации и обеспеченность иммунного реагирова­ния в ответ на внедрение антигена. В зависи­мости от физико-химических свойств вещест­ва, условий его внедрения, характера реакции и реактивности макроорганизма различают иммуногены, толерогены и аллергены.

Иммуногены при попадании в организм спо­собны индуцировать продуктивную реакцию иммунной системы, которая заканчивается выработкой факторов иммунитета (антите­ла, антигенореактивные клоны лимфоци­тов). В клинической практике иммуногены используют для иммунодиагностики, имму­нотерапии и иммунопрофилактики многих патологических состояний.

Толероген является полной противополож­ностью иммуногену. При взаимодействии с системой приобретенного иммунитета он вы­зывает включение альтернативных механиз­мов, приводящих к формированию иммуноло­гической толерантности или неотвечаемости на эпитопы данного толерогена (см. разд. 11.6). Толерогену, как правило, присуща мономер­ность, низкая молекулярная масса, высокая эпитопная плотность и высокая дисперсность (безагрегатность) коллоидных растворов. Толерогены используют для профилактики и лечения иммунологических конфликтов и ал­лергии путем наведения искусственной неот­вечаемости на отдельные антигены.

Аллерген также воздействует на систему приобретенного иммунитета. Однако, в отли­чие от иммуногена, производимый им эффект формирует патологическую реакцию организ­ма в виде гиперчувствительности немедлен­ного или замедленного типа (см. разд. 11.4). По своим свойствам аллерген не отличается от иммуногена. В клинической практике ал­лергены применяют для диагностики инфек­ционных и аллергических заболеваний.

Среди иммуногенов выделяют две груп­пы антигенов, различающихся по необходи­мости вовлечения Т-лимфоцитов в индук­цию иммунного ответа. Это — Т-зависимые и Т-независимые антигены. Иммунная реакция в ответ на введение Т-зависимого антиге­на реализуется при обязательном участии Т-лимфоцитов (Т-хелперов). К Т-зависи-мым относится большая часть известных ан­тигенов. В то же время для развития иммун­ного ответа на Т-независимые антигены не требуется привлечение Т-хелперов. Эти ан­тигены способны непосредственно стимули­ровать В-лимфоциты к антителопродукции, дифференцировке и пролиферации, а также вызывать иммунный ответ у бестимусных

животных. Т-независимые антигены имеют относительно простое строение. Это круп­ные молекулы с молекулярной массой более 10^3 кДа, они поливалентны и имеют моно­тонно повторяющиеся последовательности с многочисленными однотипными эпитопами. Т-независимые антигены обладают митоген-ным действием и способны индуцировать поликлональную реакцию. В качестве при­мера можно привести полимерную форму флагеллина (сократительный белок жгути­ков бактерий), Л ПС, туберкулин, сополиме­ры D-аминокислот и др.

От Т-независимых антигенов следует отличать суперантигены. Это условный термин, введенный для обозначения группы веществ, в основном, микробного происхождения, которые могут не­специфически вызывать поликлональную реак­цию. В организме в обход естественного процес-синга антигена цельная молекула суперантигена способна вмешиваться в кооперацию антигенп-резентирующей клетки и Т-хелпера и нарушать распознавание «свой-чужой». Установлено, что молекула суперантигена самостоятельно связы­вается с межклеточным комплексом «антиген гистосовместимости II класса — Т-клеточный рецептор» и формирует ложный сигнал распоз­навания чужеродной субстанции. В процесс не­специфической активации одновременно вовле­кается огромное количество Т-хелперов (до 20 % от общей массы и более), возникает гиперпро­дукция цитокинов, за которой следует поликло-нальная активация лимфоцитов, их массовая ги­бель вследствие апоптоза и развитие вторичного функционального иммунодефицита.

На сегодняшний день свойства суперанти­гена обнаружены у стафилококкового энте-ротоксина, белков вирусов Эпштейна—Барр, бешенства, ВИЧ и некоторых других микро­бных субстанций.

10.1.4. Антигены организма человека

Начало изучению аллоантигенных свойств тканей было положено К. Ландштайнером, который в 1900 г. открыл систему групповых антигенов эритроцитов (АВО). В организме человека выделяют множество разнообразных антигенов. Как биологические объекты, они нужны не только для полноценного развития и функционирования всего организма в целом,

но также несут важную информацию, столь необходимую для клинико-лабораторной диа­гностики при определении иммунологической совместимости органов и тканей в трансплан­тологии, а также в научных исследованиях.

С позиций клинической медицины наиболь­ший интерес и важность из числа группоспеци-фических (аллогенных) антигенов представляют антигены групп крови, среди индивидуально специфических (изогенны) — антигены гисто­совместимости, а в группе органо- и тканеспеци-фических — раковоэмбриональные антигены.

10.1.4.1. Антигены групп крови человека

Антигены групп крови человека легко опре­деляются на мембране эритроцитов, поэтому они получили название «эритроцитарные ан­тигены». На сегодняшний день известно более 250 различных эритроцитарных антигенов.

Наиболее важное клиническое значение имеют антигены системы АВ0 и Rh (ре­зус-фактор): их необходимо учитывать при проведении гемотрансфузионной терапии, пересадке органов и тканей, предупреж ie нии и лечении иммуноконфликтныхослож-нений беременности и т. д.

Антигены системы АВО располагаются на на­ружной мембране всех клеток крови и тканей человека, но наиболее выражены на эритроци­тах. Кроме того, у большинства людей (80 %) эти антигены обнаруживаются в плазме крови, лимфе, секретах слизистых и других биоло­гических жидкостях. Антигены системы АВО синтезируются ядросодержащими предшест­венниками эритроцитов и многими другими клетками организма. Они свободно секретиру-ются в межклеточное пространство и поэтому могут появиться на мембране клетки либо как продукт клеточного биосинтеза, либо в резуль­тате сорбции из межклеточных жидкостей.

Антигены системы АВО представляют собой высокогликозилированные пептиды: 85 % при­ходится на углеводную часть и 15 % — на поли­пептидную. Пептидный компонент состоит из 15 аминокислотных остатков. Он постоянен для всех групп крови АВО и иммунологически инер­тен. Иммуногенность молекулы антигена систе­мы АВО определяется его углеводной частью.

В системе антигенов АВО выделяют три вари­анта антигенов, различающихся по строению углеводной части: Н, А и В. Базовой молекулой является антиген Н, специфичность которого определяют три углеводных остатка. Антиген А имеет в структуре дополнительный, четвертый углеводный остаток— N-ацетил-D-галактозу, а антиген В — D-галактозу Антигены системы АВО имеют независимое аллельное наследо­вание, что определяет наличие в популяции 4 групп крови: 0(1), А (II), В (III) и AB(IV). Кроме того, антигены А и В имеют несколько аллотипов (например, А1, A2, А3… или В1, В2, В3…), которые встречаются в популяции людей с различной частотой.

Определяют групповую принадлежность пациента по системе антигенов АВО в реак­ции агглютинации — эритроциты пациента тестируются специфическими групповыми антисыворотками. Однако, учитывая высо­кий популяционный полиморфизм данной антигенной системы, перед гемотрансфузией в обязательном порядке проводят биологи­ческую пробу на совместимость реципиента и препарата донорской крови. Ошибка в опре­делении групповой принадлежности и пере­ливание пациенту несовместимой по группе крови, как правило, приводит к развитию острого состояния — внутрисосудистого ге­молиза вплоть до гемолитического шока и гибели пациента.

Второй важнейшей системой эритроцитарньгх антигенов является система резус (Rh) — так на­зываемые резус-антигены или резус-факторы. Эти антигены синтезируются предшественниками эритроцитов и обнаруживаются главным образом на эритроцитах, так как они нерастворимы в био­логических жидкостях. По химической структуре резус-антиген представляет собой термолабиль­ный липопротеид. Выделяют 6 разновидностей этого антигена. Генетическая информация о его строении находится в многочисленных аллелях трех сцепленных между собой локусов (D/d, С/с, Е/е). В зависимости от наличия или отсутствия резус-антигена, в популяции людей различают две группы: резус-положительные и резус-отри­цательные индивидуумы.

Совпадение по резус-антигену важно не только при переливании крови, но также для течения и исхода беременности.

При беременности «резус-отрицательной» матери «резус-положительным» плодом мо­жет развиться «резус-конфликт». Это пато­логическое состояние связано с выработкой антирезусных антител, способных вызвать иммунологический конфликт: невынаши­вание беременности или желтуху новорож­денного (внутрисосудистый иммунный ли-зис эритроцитов).

Эпитопная плотность антигена на мембране эритроцитов невысока. Кроме того, его моле­кула недостаточно удобна для взаимодействия с антителами. Поэтому «резус-антигены» оп­ределяют на мембране эритроцитов в реакции непрямой агглютинации (реакция Кумбса).

10.1.4.2. Антигены гистосовместимости

На цитоплазматических мембранах практи­чески всех клеток макроорганизма обнаружива­ются антигены гистосовместимости. Большая часть из них относится к системе главного ком­плекса гистосовместимости, или МНС (аббр. от англ. Main Hystocompatibility Complex).

Антигены гистосовместимости играют ключевую роль в осуществлении специфичес­кого распознавания «свой-чужой» и индук­ции приобретенного иммунного ответа. Они определяют совместимость органов и тканей при трансплантации в пределах одного вида, генетическую рестрикцию (ограничение) им-мунного реагирования и другие эффекты.

Большая заслуга в изучении МНС, как яв­ления биологического мира, принадлежит Дж. Доссе, П. Догерти, П. Гореру, Г. Снеллу, Р. Цинкернагелю, Р. В. Петрову, ставшим ос­новоположниками иммуногенетики.

Впервые МНС был обнаружен в 60-х годах XX в. в опытах на генетически чистых (инбредных) линиях мышей при попытке межлинейной пе­ресадки опухолевых тканей (П. Горер, Г. Снелл). У мышей этот комплекс получил название Н-2 и был картирован в 17-й хромосоме.

У человека МНС был описан несколько позже в работах Дж. Доссе. Его обозначи­ли как HLA (аббр. от англ. Human Leukocyte Antigen), так как он ассоциирован с лейкоци­тами. Биосинтез HLA определяется генами,

локализованными сразу в нескольких локусах короткого плеча 6-й хромосомы.

МНС имеет сложную структуру и высокую полиморфность. По химической природе анти­гены гистосовметимости представляют собой гликопротеиды, прочно связанные с цитоплаз-матической мембраной клеток. Их отдельные фрагменты имеют структурную гомологию с молекулами иммуноглобулинов и поэтому от­носятся к единому суперсемейству. Различают два основных класса молекул МНС. Условно принято, что МНС I класса индуцирует преиму­щественно клеточный иммунный ответ, а МНС II класса— гуморальный. Основные классы объединяют множество сходных по структуре антигенов, которые кодируются множеством аллельных генов. При этом на клетках индиви­дуума могут экспрессироваться не более двух разновидностей продуктов каждого гена МНС, что важно для поддержания популяционной гетерогенности и выживания как отдельной особи, так и всей популяции в целом.

МНС I класса состоит из двух нековалент-но связанных полипептидных цепей с разной молекулярной массой: тяжелой альфа-цепи и легкой бета-цепи (рис. 10.1). Альфа-цепь имеет внеклеточный участок с доменным строением (alfa1-, а2- и а3-домены), трансмембранный и цитоплазматический. Бета-цепь представляет собой бета-2-микроглобулин, который «нали­пает» на а3-домен после экспрессии альфа-це­пи на цитоплазматической мембране клетки.

Альфа-цепь обладает высокой сорбцион-ной способностью по отношению к пептидам Это свойство определяется all- и а2-домена-ми, формирующими так называемую «щель Бьоркмана» — гипервариабельный участок, ответственный за сорбцию и презентацию молекул антигена. «Щель Бьоркмана» МНС I класса вмещает нанопептид, который в та­ком виде легко выявляется специфическими антителами.

Процесс формирования комплекса «МНС I класса-антиген» протекает внутриклеточно непрерывно. В его состав включаются любые эндогенно синтезированные пептиды, в том числе вирусные. Комплекс изначально соби­рается в эндоплазматическом ретикулуме, куда при помощи особого белка, протеосомы, пере­носятся пептиды из цитоплазмы. Включенный в комплекс пептид придает структурную ус­тойчивость МНС I класса. В его отсутствие функцию стабилизатора выполняет шаперон (калнексин).

Для МНС I класса характерна высокая ско­рость биосинтеза — процесс завершается за 6 часов. Этот комплекс экспрессируются на поверхности практически всех клеток, кроме эритроцитов (в безъядерных клетках отсутс­твует биосинтез) и клеток ворсинчатого тро-фобласта («профилактика» отторжения пло­да). Плотность МНС I класса достигает 7000 молекул на клетку, и они покрывают около 1 % ее поверхности. Экспрессия молекул заметно усиливается под влиянием цитокинов, напри­мер gama-интерферона.

В настоящее время у человека различают более 200 различных вариантов HLA I класса. Они кодируются генами, картированными в трех основных сублокусах 6-й хромосомы и наследуются и проявляются независимо: HLA-A, HLA-B и HLA-C. Локус А объединяет более 60 вариантов, В — 130, а С — около 40.

Типирование индивидуума по HLA I класса проводится на лимфоцитах серологическими методами — в реакции микролимфоцитолиза со специфическими сыворотками. Для диагнос­тики используют поликлональные специфи­ческие антитела, обнаруживаемые в сыворотке крови многорожавших женщин, пациентов, получавших массивную гемотрансфузионную терапию, а также моноклональные.

Учитывая независимое наследование генов сублокусов, в популяции формируется беско­нечное множество неповторяющиеся комби­наций HLA I класса. Поэтому каждый человек строго уникален по набору антигенов гистосов-местимости, исключение составляют только однояйцовые близнецы, которые абсолютно похожи по набору генов. Основная биологи­ческая роль HLA I класса состоит в том, что они определяют биологическую индивидуаль­ность («биологический паспорт») и являются маркерами «своего» для иммунокомпетентных клеток. Заражение клетки вирусом или мутация изменяют структуру HLA I класса. Содержащая чужеродные или модифицированные пептиды молекула МНС I класса имеет нетипичную для данного организма структуру и является сиг­налом для активации Т-киллеров (СD8+-лим-фоциты). Клетки, отличающиеся по I классу, уничтожаются как чужеродные.

В структуре и функции МНС II класса есть ряд принципиальных отличий. Во-первых, они имеют более сложное строение. Комплекс об­разован двумя нековалентно связанными по­липептидными цепочками (альфа-цепь и бета-цепь), имеющими сходное доменное строение (рис. 10.1). Альфа-цепь имеет один глобуляр­ный участок, а бета-цепь — два. Обе цепи как трансмембранные пептиды состоят из трех участков — внеклеточного, трансмембранного и цитоплазматического.

Во-вторых, «щель Бьоркмана» в МНС II клас­са образована одновременно обеими цепочками. Она вмещает больший по размеру олигопептид (12—25 аминокислотных остатков), причем пос­ледний полностью «скрывается» внутри этой щели и в таком состоянии не обнаруживается специфическими антителами.

В-третьих, МНС II класса включает в себя пептид, захваченный из внеклеточной среды путем эндоцитоза, а не синтезированный са­мой клеткой.

В-четвертых, МНС II класса экспресси-руется на поверхности ограниченного числа клеток: дендритных, В-лимфоцитах, Т-хел-перах, активированных макрофагах, тучных, эпителиальных и эндотелиальных клетках. Обнаружение МНС II класса на нетипичных клетках расценивается в настоящее время как иммунопатология.

Биосинтез МНС II класса протекает в эн-доплазматическом ретикулуме, образующий­ся димерный комплекс затем встраивается в цитоплазматическую мембрану. До включе­ния в него пептида комплекс стабилизируется шапероном (калнексином). МНС II класса экспрессируется на мембране клетки в течение часа после эндоцитоза антигена. Экспрессия комплекса может быть усилена ga-интерферо-ном и снижена простагландином Е2.

У мыши антиген гистосовместимости по­лучил название la-антиген, а у человека, по аналогии, — HLAII класса.

По имеющимся данным, человеческому организму свойственен чрезвычайно высо­кий полиморфизм HLA II класса, который в большей степени определяется особенностя­ми строения бета-цепи. В состав комплекса входят продукты трех основных локусов: HLA DR, DQ и DP. При этом локус DR объединяет около 300 аллельных форм, DQ — около 400, a DP — около 500.

Наличие и тип антигенов гистосовмес­тимости II класса определяют в серологи­ческих (микролимфоцитотоксический тест) и клеточных реакциях иммунитета (сме­шанная культура лимфоцитов, или СКЛ). Серологическое типирование МНС II класса производят на В-лимфоцитах с использо­ванием специфических антител, обнаружи­ваемых в сыворотке крови многорожавших женщин, пациентов, получавших массивную гемотрансфузионную терапию, а также син­тезированных методами генной инженерии. Тестирование в СКЛ позволяет выявить ми­норные компоненты МНС II класса, не опре­деляемые серологически. В последнее время все чаще применяют ПЦР.

Биологическая роль МНС II класса чрез­вычайно велика. Фактически этот комплекс участвует в индукции приобретенного им­мунного ответа. Фрагменты молекулы анти­гена экспрессируются на цитоплазматичес-кой мембране особой группы клеток, которая получила название антигенпрезентирующих клеток (АПК). Это еще более узкий круг сре­ди клеток, способных синтезировать МНС II класса. Наиболее активной АПК считается дендритная клетка, затем — В-лимфоцит и макрофаг. Структура МНС II класса с вклю-

ченным в него пептидом в комплексе с ко-факторными молекулами CD-антигенов вос­принимается и анализируется Т-хелперами (СD4+-лимфоциты). В случае принятия ре­шения о чужеродности включенного в МНС II класса пептида Т-хелпер начинает синтез соответствующих иммуноцитокинов, и вклю­чается механизм специфического иммунного реагирования. В итоге активируется проли­ферация и окончательная дифференцировка антигенспецифичных клонов лимфоцитов и формирование иммунной памяти.

Помимо описанных выше антигенов гисто-совместимости, идентифицирован III класс молекул МНС. Локус, содержащий кодирую­щие их гены, вклинивается между I и II клас­сом и разделяет их. К МНС III класса относят­ся некоторые компоненты комплемента (С2, С4), белки теплового шока, факторы некроза опухоли и др.

10.1.4.3. Опухольассоциированные антигены

Первые указания на наличие в опухолях специфических антигенов датируются 40-ми годами XX в. В 1948-1949 гг. Л. А. Зильбер, видный отечественный микробиолог и имму­нолог, при разработке вирусной теории рака доказал существование антигена, специфич­ного для опухолевой ткани. Позже, в 60-х годах XX в., Г. И. Абелев (в опытах на мышах) и Ю. С. Татаринов (при обследовании лю­дей) обнаружили в сыворотке крови больных первичным раком печени эмбриональный вариант сывороточного альбумина — альфа-фетопротеин. К настоящему моменту опу­хольассоциированные антигены обнаружены и охарактеризованы для многих опухолей, и были даже клонированы их гены. Однако не все опухоли содержат специфические мар­керные антигены, и не все маркеры обладают строгой тканевой специфичностью.

Опухольассоциированные антигены клас­сифицируют по локализации и генезу. По местонахождению различают сывороточные, секретируемые опухолевыми клетками в меж­клеточную среду, и мембранные. Последние по­лучили название опухолеспецифтеских транс­плантационных антигенов, или TSTA (аббр. от англ. Tumorspecific transplantation antigen).

В зависимости от природы выделяют вирус­ные, эмбриональные, нормальные гиперэкспрес-сируемые и мутантные антигены, ассоции­руемые с опухолями. Вирусные опухольассо­циированные антигены, по сути, являются белками онковирусов. Эмбриональные анти­гены в норме синтезируются в зародышевом периоде. Это, например, альфа-фетопротеин (см. выше); нормальный протеин тестикул, MAGE 1, 2, 3 и др. — маркеры нормальных семенников, а также меланомы, рака молоч­ной железы и пр.; хорионический гонадотро-пин — в норме синтезируется в плаценте, а также при хориокарциноме и других опухо­лях. В меланоме в большом количестве синте­зируется нормальный фермент тирозиназа.

Из мутантных белков следует отметить характерный для многих опухолей протеин Ras — ГТФ-связывающий белок, участвую­щий в трансмембранном проведении сигнала. Маркерами рака молочной и поджелудочной желез, карцином кишечника являются моди­фицированные муцины (MUC 1, 2 и др.).

Из общих свойств опухольассоциированных антигенов необходимо отметить, что в боль­шинстве своем они представляют собой про­дукты экспрессии генов, в норме включаемых только в эмбриональном периоде. Они являют­ся слабыми иммуногенами, хотя в отдельных случаях могут индуцировать реакцию цитоток-сических Т-лимфоцитов (Т-киллеров) и рас­познаваться в составе молекул МНС (HLA) I класса. Направленные против опухольассоци­ированных антигенов специфические антитела, в сущности, не угнетают рост опухолей, а, на­оборот, вызывают иммунодепрессию.

10.1.4.4. CD-антигены

На мембране клеток обнаруживаются груп­повые антигены, объединяющие клетки, име­ющие сходные морфофункциональные харак­теристики или находящиеся на определенной стадии развития. Эти маркерные молекулы получили название антигенов кластеров диф-ференцировки клетки, или CD-антигенов (аббр. от англ. Cell Differentiation Antigens, или Claster Definition). По структуре они пред­ставляют собой гликопротеиды, многие из которых относятся к суперсемейству имму­ноглобулинов.

CD-антигены используют для выявления отличий в группах клеток, из которых на­иболее широкое распространение получи­ли маркеры иммунокомпетентных клеток. Например, CD3 экспрессируется на попу­ляции Т-лимфопитов, CD4 характерен для субпопуляции Т-хелперов, a CD8 — ци-тотоксических Т-лимфоцитов Т-киллеров. CDlla обнаруживается на цитоплазмати-ческих мембранах моно- и гранулонитов, а CDllb — на естественных киллерах. CD19-22 являются маркерами В-лимфоцитов.

Список CD-маркеров довольно обшир­ный, он насчитывает около 200 вариантов. Основные CD-маркеры клеток, участвующих в иммунном ответе, представлены в табл. 10.1. Информация о структуре закодирована в раз­личных участках генома, а экспрессия зави­сит от стадии дифференцировки клетки и ее функционального состояния.

CD-антигены имеют диагностическое зна­чение в клинике иммунодефицитных состо­яний, а также в научно-исследовательской работе. Типирование CD-маркеров осущест­вляется в серологических реакциях с исполь­зованием моноклональных антител (реакция иммунофлюоресценции, цитотоксический тест и др.).

10.1.5. Антигены микробов

В структуре микробов определяется не­сколько типов антигенов. При этом анти­генный состав микроба во многом зависит от его эволюционного и таксономического положения. Принципиальные различия име­ют антигены бактерий, вирусов, грибов и простейших.

Вместе с тем микробные антигены могут быть общими для отдельных систематических категорий. Так, существуют антигены, харак­терные для целых семейств, родов и видов. Внутри видов могут быть выделены серо­логические группы (серогруппы), варианты (серовары) или типы (серотипы). Антигены микробов используют для получения вакцин и сывороток, необходимых для диагностики, профилактики и лечения инфекционных или аллергических заболеваний, а также в диа­гностических реакциях.

10.1.5.1. Антигены бактерий

В структуре бактериальной клетки разли­чают жгутиковые, соматические, капсуль-ные и некоторые другие антигены (рис. 10.2). Жгутиковые, или Н-антигены, локализуют­ся в локомоторном аппарате бактерий — их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-ан-тиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу со­ставляют ЛПС. О-антиген проявляет термос­табильные свойства — он не разрушается при длительном кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

Если проиммунизировать животное жи­выми бактериями, имеющими жгутики, то будут вырабатываться антитела, на­правленные одновременно против О- и Н-антигенов. Введение животному про­кипяченной культуры стимулирует био­синтез антител к соматическому антигену. Культура бактерий, обработанная фено-

лом, вызовет образование антител к жгу­тиковым антигенам.

Капсульные, или К-антигены, располагаются наповерхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 °С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi-антигена. Обнаружение этого ан­тигена или специфичных к нему антител име­ет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секрети-руются бактериями в окружающую среду (на­пример, туберкулин). При взаимодействии со специфическими антителами токсины, фер­менты и другие биологически активные моле­кулы бактериального происхождения теряют свою активность. Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выра­женной иммуногенностью, чья биологическая активность играет ключевую роль в формиро­вании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует виру­лентные свойства микроорганизма и обеспечи­вает иммунитет к нему. Описываемые антиге­ны получили название протективных. Впервые протективный антиген был обнаружен в гной-

ном отделяемом карбункула, вызванного ба­циллой сибирской язвы. Это вещество являет­ся субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц — так называемого отечного и летального факторов.

10.1.5.2. Антигены вирусов

В структуре вирусной частицы различают несколько групп антигенов: ядерные (или ко­ровью), капсидные (или оболочечные) и су-перкапсидные. На поверхности некоторых вирусных частиц встречаются особые V-ан-тигены— гемагглютинин и фермент нейра-минидаза. Антигены вирусов различаются по происхождению. Часть из них — вирусоспе-цифические. Информация об их строении картирована в нуклеиновой кислоте вируса. Другие антигены вирусов являются компо­нентами клетки хозяина (углеводы, липиды). они захватываются во внешнюю оболочку ви­руса при его рождении путем почкования.

Антигенный состав вириона зависит от стро­ения самой вирусной частицы. Антигенная специфичность простоорганизованных виру­сов связана с рибо- и дезоксирибонуклеопро-теинами. Эти вещества хорошо растворяются в воде и поэтому обозначаются как S-антиге-ны (от лат. solutio — раствор). У сложноорга-низованных вирусов часть антигена связана с нуклеокапсидом, а другая — локализуется во внешней оболочке — суперкапсиде.

Антигены многих вирусов отличаются вы­сокой степенью изменчивости. Это связано с постоянным мутационным процессом, кото­рый претерпевает генетический аппарат вирус­ной частицы. Примером могут служить вирус гриппа, вирусы иммунодефицитов человека.

10.1.6. Процессы, происходящие с антигеном в макроорганизме

Процесс проникновения антигена и его кон­такт с иммунной системой протекают поэтапно и имеют свою динамику во времени. При этом на каждом этапе появления и распространения в макроорганизме антиген сталкивается с мощ­ным противодействием развитой сети разнооб­разных факторов иммунитета (см. табл. 9.3.).

Существуют разнообразные пути проник­новения и распространения антигена в мак-

роорганизме. Они могут появляться внутри самого макроорганизма (эндогенное проис­хождение) или поступать извне (экзогенное происхождение). Экзогенное происхождение предполагает, что антиген может проникнуть в макроорганизм:

  1. через дефекты кожных покровов и сли­зистых (как результат ранений, микротравм, укусов насекомых, расчесов и др.);

  2. путем всасывания в желудочно-кишечном тракте (эндоцитоз эпителиальными клетками);

  3. межклеточно (при незавершенном фа­гоцитозе, облигатном или факультативном внутриклеточном паразитировании микроб может разноситься по всему организму);

  4. чресклеточно (так распространяются об-лигатные внутриклеточные паразиты, напри­мер, вирусы).

В организме антиген разносится лимфой (лимфогенный путь) и кровью (гематогенный путь) по различным органам и тканям. При этом он распределяется не хаотично — анти­ген чаще всего фильтруется в лимфатических узлах, а также в лимфоидной ткани печени, селезенки, легких и других органов, где всту­пает в контакт с разнообразными факторами иммунной защиты.

Ответная реакция этих факторов заключа­ется в инактивации и удалении (элиминации) антигена из макроорганизма. Первыми всту­пают в действие факторы врожденного им­мунитета, так как эта система, несмотря на ее многообразие и сложность отдельных ее ком­понентов, не требует длительного времени для активации. Если антиген не был инактивиро-ван или элиминирован в течение 4 ч, в ак­тивную работу включается система факторов приобретенного иммунитета. Эффективность их действия обеспечивается путем специфи­ческого распознавания «свой-чужой» и выра­ботки соответствующих факторов регуляции и иммунной защиты (специфические антите­ла, клоны антигенореактивных лимфоцитов).

Совокупный эффект всех звеньев и уровней иммунной защиты макроорганизма, незави­симо от степени их вовлечения в процесс, направлен на:

  1. связывание и блокирование биологичес­ки активных участков молекулы антигена;

  2. разрушение или отторжение антигена;

3) полную утилизацию, изоляцию (инкап­суляции) или выведение остатков антигена из макроорганизма.

В итоге достигается полное или частич­ное восстановление гомеостаза. Параллельно формируется иммунная память, толерант­ность или аллергия.



Источник: studfile.net


Добавить комментарий